Transit-Centric Smart Mobility System for High-Growth Urban Activity Centers: Improving Energy Efficiency through Machine Learning

PI: Jinhua Zhao

Presenter: Shenhao Wang

Massachusetts Institute of Technology

June 24, 2021

2021 DOE Vehicle Technologies Office Annual Merit Review Presentation Project ID: eems103

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: October 2020End: December 2023
- Modification: 3 months delay of two researchers and 8 months delay of the other two due to foreign national processing (FNP)
- 5% complete

Budget

- Total funding: \$1.75 Million
- Budget period 1: \$499,945

Barriers

- Underdeveloped transit systems cannot meet the travel demand of high-growth urban areas.
- Short-term and long-term transit ridership cannot be predicted accurately.
- The transit system is vulnerable to system disruptions and unresponsive to the real-time dynamics of travel demand.

Partners

- Research partners: Northeastern University; National Renewable Energy Laboratory.
- Transit partners: Massachusetts Port Authority; Massachusetts Bay Transportation Authority; Chicago Transit Authority.

6/24/21

Relevance – Achieve Three Main Objectives

- Objective 1. Designing a Transit-Centric Smart Mobility System (TSMS) that is adaptive to changing demand patterns, resilient to system disruptions, and responsive to real-time conditions.
- Objective 2. Building the Integrated TSMS with the state-of-the-art technology, including robust optimization (RO), reinforcement learning (RL), and deep learning (DL)
- Objective 3. Deploying operations control and demand. predictions in real-world experiments (Chicago and Boston) and large-scale simulations.

Project framework

Relevance – Achieve Broad and Specific Impacts

Broad Impacts

- Improving transit service quality, ridership, and energy efficiency, measured by NREL's Mobility-Energy-Productivity (MEP) metric.
- Advancing technology transfer to transit operators and enhancing US industry practices in terms of mobility and energy efficiency

Specific Quantitative Impacts

Field Experiments

- ≥ 5% reduction in passenger waiting and riding time for the specific routes in the field experiments
- ≥ 8% increase in predictive performance in spatiotemporally detailed models for transit mode share

Simulations

- ≥ 5% increase in transit mode share
- ≥ 3% increase in energy efficiency

Approach – Timeline and Go/No-Go Points

Budget Period	Start/End Date	Go/NG Points	Description	
1	10/01/20 – 12/31/21 (3~8 months' delay due to FNP)	Completion of Core Technology Modules	 Transit operations planning, control, and demand prediction modules have functioning interfaces. Documenting the passenger waiting and riding time and predicted ridership as the output metrics Improving upon the baseline performances by ≥3% in all four scenarios. 	
2	01/20/22 – 12/31/22	Completion of Pilot Experiments	 Detailed implementation plans for full-scale field experiments are prepared. At least ≥5% reduction of passenger waiting and riding time and ≥5% improvement of predictive performance in the completed pilot experiments. 	
3	1/1/2023 – 12/31/2023	Impact Communicati ons Complete	Success is evaluated by comparing results to the expected ≥5% reduction of passeng waiting and riding time and ≥8% improvement of predictive performance in experimen Impact of the technologies is evaluated by comparing to the expected ≥5% improvement of transit ridership and ≥3% improvement of energy efficiency in simulations.	

Approach – Timeline and Milestones

Budget Period	G/NG	Milestones	Targeting Objectives	Completion Status
1	Completion of Core Technology Modules	M1-1: Operations Planning and Control Modules	OBJ1,2	3%
		M1-2: Demand Prediction Module	OBJ1,2	12%
		M1-3: Completion of Data Collection	OBJ1,2	12%
2	Completion of Pilot Experiments	M2-1: Pilot Operations Control Intervention	OBJ1,3	NA
		M2-2: Pilot Demand Prediction	OBJ1,3	NA
		M2-3: Completion of Integrated Simulation	OBJ1,2	NA
	Impact Communications Complete	M3-1: Full Operations Control Experiments	OBJ1,3	NA
		M3-2: Full Demand Prediction Experiments	OBJ1,3	NA
3		M3-3: Success Measures in Field Experiments	OBJ1,3	NA
		M3-4: Success Measures in Large-Scale Simulations	OBJ1,3	NA
		M3-5: Impact Communications Complete	OBJ1,3	NA

Approach – Four Steps

- Part 1. Inputs data collection: [Objectives 1,2]
- Part 2. Technology development three modules: [Objectives 1,2]
- Part 3. Technology implementation and transfer: [Objectives 1,2,3]
- Part 4. Outputs impact evaluation: [Objectives 1,2,3]

Four-step approach

Technical Accomplishments – Part 1 Collected and Shared Data

Data collection

- · Socio-demographics data
- Transit system data (e.g. rail and bus lines, stations, routes)
- Spatiotemporal bus, rail, and transportation network companies (TNC) ridership

Data sharing

 Shared data documentation and catalog on Github (https://github.com/sunnyqywang/Chicago- Integrated-Data-Repo.git)

Technical Accomplishments – Part 2.1 Building Demand Prediction Module with Deep Graphical Neural Networks

- 1. Benchmark 1 Historical observation $y_t = y_{prev}$
- 2. Benchmark 2 Weighted least squares $y_t = X_t^m \beta^m + y_{prev} \lambda + \epsilon_t$
- 3. Deep graphical convolutional neural network

Transit network in Chicago Downtown

Architecture of Graph Neural Networks

Technical Accomplishments – Part 2.1 Capturing Uncertainty in Travel Demand

Two Stations in Chicago Downtown

Example 1: Ridership in the Clark station (highest demand)

Example 2: Ridership in the LaSalle station (lowest demand)

6/24/21 DOE Annual Merit Presentation - MIT

Technical Accomplishments – Part 2.2 Creating Robust Transit Network with Robust Optimization

Formulating the structure of the problem

- Layer 1: Bus operation optimization
- Layer 2: Bus operation optimization with multimodal extension
- Layer 3: Joint network optimization for the multimodal system

Basic Formulation for bus frequency setting (Layer 1)

Inputs

- Passenger flow (o, d, t): passengers with origin o and destination d departure at time t
- The set of passenger flow \mathcal{F}
- Demand matrix $u = (u_t^{o,d})$
- Feasibility set for schedules

Outputs

• Decision variables: $x = (x_t^{p,v}), x_t^{p,v} = 1$ indicates a vehicle with type v operating on a pattern p departures from the first station at time t, 0 otherwise.

Technical Accomplishments – Part 2.3 Providing Real-Time Bus Feeder

Service with Reinforcement Learning

Agent: Buses

6/24/21

 Environment: Simulation of the transit service with fixed and flexible routing using estimated demands as inputs

- Training: exploring actions that yield the best overall reward (e.g. minimizing delay & service rejection)
- Result: Finding the best decision to stay on fixed route vs. deviate in each segment

Collaboration and Coordination with Other Institutions

Research partners

- Northeastern University: Collaborated on real-time control strategies and the formulation of RL.
- National Renewable Energy Laboratory: Discussed the computation of MEP metric, data access, and integration of MEP into TSMS.

Transit partners

- Chicago Transit Authority: Collected the bus and rail ridership data with CTA's support; discussed upcoming survey and planning efforts around first-/last-mile connectivity
- Massachusetts Bay Transportation Authority: Accessed the bus and rail ridership data.

Other potential collaborators

- Argonne National Lab: Discussed POLARIS capabilities and applications
- Boston Seaport TMA: Discussed routing of private shuttles to prepare for field experiments

Remaining Challenges and Barriers – Logistics, Technology, and **Implementation**

Logistics challenges

- Two researchers did not complete the FNP until December 2020.
- Two researcher have not completed FNP yet (by May 2021).
- Unfortunately FNP is out of both MIT and DOE's control.
- Need to apply for at least three months' No-Cost Time Extension (NCTE)

Technical challenges

- Uncertainty quantification in DI models
- Analytical solution for the RO formulation under relatively realistic assumptions
- Curse of dimensionality and simulation efficiency in the RLbased real-time bus control

Implementation challenges

- Site choice for field experiment
- Uncertainty in COVID-19 recovery timeline, long-term impacts on partners (e.g. Massport)

Proposed Future Research

1. Data collection [BP1-Milestone 1.3]

- Collect high-dimensional urban imagery and other essential data for technology development.
- Continue to document and share data.

2. Technology Development [BP1-Milestone 1.1 and 1.2]

- Create innovative DL models to predict both the mean and variance of travel demand.
- Design bus frequency robust to demand uncertainty and unexpected disruption.
- Design real-time bus control strategies with RL and efficient simulation.

3. Technology Implementation [BP2-Milestones 2-1/2/3]

- Build the first TSMS integrating the three technology modules.
- Provide an implementation plan for the field experiments.

Summary

Objective

 Build an Integrated TSMS with the state-of-the-art RO, RL, and DL techniques, and demonstrate the benefits in mobility and energy efficiency.

Achievements (January – May, 2020)

- Logistics & Collaboration
 - Kicked off the project externally and internally
 - Collaborated with the research and industrial partners for data access and technology development.
- Technical Accomplishments
 - Collected and shared socio-economic and real-time ridership data.
 - Constructed benchmark and DL models for the travel demand prediction module.
 - Provided the formulation for transit operation planning and control modules with RO and RL techniques.

Technical Back-Up Slides

Technical Backup Slides – A List of Acronyms

BP: Budget Period

TSMS: Transit-centric Smart Mobility System

DL: Deep Learning

RO: Robust Optimization

RL: Reinforcement Learning

FNP: Foreign National Processing

TNC: Transportation Network Companies

MEP: Mobility-Energy-Productivity

DOE: Department of Energy

NREL: National Renewable Energy Laboratory

NCTE: No-Cost Time Extension

MIT: Massachusetts Institute of Technology

Technical Backup Slides – DL for Demand Prediction

Uncertainty Quantification in Short-term Demand Forecasting

$$y = f(x) + \epsilon$$

$$\epsilon \sim Normal(0, \sigma^{2}(x))$$

- 1. Data Uncertainty $(\sigma^2(x))$: The uncertainty (noise) in data. Can be modelled as a function of inputs and quantified by propagating inputs through the neural network and estimate with a likelihood loss.
- 2. Model Uncertainty: The uncertainty in the estimated model f. Can be quantified with ensemble: Take the predicted values $(\mu_1...\mu_K)$ and standard deviations $(\sigma_1 ... \sigma_K)$ of top K models, the ensembled mean (μ_*) and standard deviation (σ_*) are

$$\mu_* = \frac{1}{K} \sum_k \mu_k$$

$$= \frac{1}{K} \sum_k (\sigma_k^2 + \mu_k^2) =$$

$\sigma_*^2 = rac{1}{K}\sum_k \left(\sigma_k^2 + \mu_k^2 ight) - \mu_*^2$

Evaluation Metrics

- Mean: Mean Absolute Error, Root Mean Squared Error, Theil's U
- 2. Prediction Interval: Prediction Interval Coverage Probability, Mean Prediction Interval Width
- 3. Composite: Likelihood

Technical Backup Slides – RO for Operation Planning

- Uncertainty in the transit system: Demand uncertainty
- Approach for protecting transit line operation against demand uncertainty: Robust Optimization
- Key component in RO: uncertainty set (model the demand uncertainty in the transit system)
- Feasible transit line operation:

$$\mathcal{X}_{B} = \{ \boldsymbol{x} \in \{0, 1\}^{|\mathcal{P}| \times |\mathcal{V}| \times T} : \sum_{p \in \mathcal{P}} \sum_{v \in \mathcal{V}} \sum_{t=1}^{T} c^{p, v} x_{t}^{p, v} \leq B; \sum_{p \in \mathcal{P}} \sum_{v \in \mathcal{V}} x_{t}^{p, v} \leq 1, \ \forall t = 1, ..., T \}$$

Nominal (Non-robust) transit line frequency setting model:

$$\begin{aligned} & \underset{x \in \mathcal{X}_{B}, \boldsymbol{\lambda}}{\min} \quad \sum_{(o,d,t) \in \mathcal{F}} \sum_{v \in \mathcal{V}} \sum_{p \in \mathcal{P}^{o,d}} \sum_{\tau = \tau_{t}^{o,d,p}}^{T} \left(w_{t,\tau}^{o,d,p,v} + \gamma v^{o,d,p} \right) \lambda_{t,\tau}^{o,d,p,v} \\ & \text{s.t.} \quad L_{\tau}^{p,v,s} = \sum_{o \in \mathcal{S}_{p}^{\text{before}}(s)} \sum_{d \in \mathcal{S}_{p}^{\text{after}}(s)}^{T} \sum_{t=1}^{T} \lambda_{t,\tau}^{o,d,p,v} \quad \forall p \in \mathcal{P}, \forall v \in \mathcal{V}, \forall s \in \mathcal{S}_{p}, \forall \tau = 1, ..., T; \\ & \sum_{v \in \mathcal{V}} \sum_{p \in \mathcal{P}^{o,d}} \sum_{\tau = \tau_{t}^{o,d,p}}^{T} \lambda_{t,\tau}^{o,d,p,v} = u_{t}^{o,d} \quad \forall (o,d,t) \in \mathcal{F}; \\ & L_{\tau}^{p,v,s} \leq C_{p} x_{\tau}^{p,v} \quad \forall p \in \mathcal{P}, \forall v \in \mathcal{V}, \forall s \in \mathcal{S}_{p}, \forall \tau = 1, ..., T; \\ & \lambda_{t,\tau}^{o,d,p,v} \geq 0 \quad \forall (o,d,t) \in \mathcal{F}, \forall p \in \mathcal{P}, \forall v \in \mathcal{V}, \forall \tau = 1, ..., T. \end{aligned}$$

Technical Backup Slides – RL for Operation Control

Service

- Flexible Feeder service with fixed and deviated stops
- May serve booking requests outside of fixed route
- Expand coverage with minimal LOS impact

System overview

- Control system updated with demand predictions
- Service sends relevant information
- Bus location, load, schedule delay

The Reinforcement Learning approach

- Light simulation model for environment representation
- Offline training for long-term base policy
- Online training for short-term adjustments

